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Abstract 
 

In this paper, it is shown that two popular conceptions about the behavior of negative power 

law (neg-p) noise—that is, noise with a PSD Lp(f)  |f|
 p
 for p<0—are based on myth and that 

the reality is quite different.  The first myth is that one can “fix” a neg-p divergence problem in 

a variance like a standard or N-sample variance simply by replacing it with an Allan or 

Hadamard variance without further action.  The paper will show that each type of variance has 

a different interpretation as an error measure and that such arbitrary swapping merely masks 

the true problem.  In the process, we will show that such variance divergences are true 

indicators of severe system or modeling problems that must be physically addressed, not 

ignored.  The second myth is that one can use ensemble-based statistical estimation techniques 

like least squares and Kalman filters to properly estimate polynomial deterministic behavior in 

data containing non-highpass filtered neg-p noise.  It is demonstrated that such noise can 

generate highly anomalous fitting results because non-highpass-filtered neg-p noise is both 

infinitely correlated and non-ergodic.  Thus, non-p noise is shown to act more like systematic 

error than conventional noise in such cases. 

 

 

I. INTRODUCTION 
 

This paper will show that two popular conceptions in dealing with negative power law noise (neg-p) noise 

are based on myth and that the reality is quite different.  By neg-p noise, we mean noise with a single 

sideband (SSB) power spectral density (PSD) Lp(f)  |f|
 p
 for p<0 [1,2].  This paper is not questioning the 

reality that higher order -variances [3], like Allan [1] and Hadamard variances [4] are convergent 

measures of neg-p noise [1,4].  What the paper will show is that it is myth that one can ―fix‖ neg-p 

divergence problems in common variances like standard and sample variances [5] simply by replacing 

them with -variances without further action.  We will show that each type of variance is a statistical 

answer to a different type of error question and that arbitrarily changing variances is misleading in that it 

doesn’t fix the divergent answer to the original question.  Furthermore, we will show that such variance 

divergences have physical significance—that they are valid indicators of real problems that must be fixed 

by changing the system or the question being asked, not mathematical artifacts to be ignored. 

 

A second myth we will address is that one can use ensemble-based statistical estimation theory, such as 

least squares [5] and Kalman [7] filters, on data containing neg-p noise to properly estimate true or 

deterministic polynomial behavior also contained in the data, unless the neg-p noise is sufficiently 

highpass-filtered [8-11].  We will demonstrate that fitting results in such cases cannot separate the true 

behavior from much of the noise, because non-highpass-filtered neg-p noise is both infinitely correlated 

and non-ergodic (ensemble averages are not equal to time averages). 
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II. MYTH  1:  ONE  CAN  ARBITRARILY  SWAP  VARIANCES  TO  “FIX” 

NEG-P  DIVERGENCE  PROBLEMS 
 

In this section, we will show that each type of variance is a statistical answer to a different type of error 

question.  Thus, arbitrarily swapping variances misleadingly changes the question and does not eliminate a 

divergent answer to the original question. 

  

A. STATISTICAL  ESTIMATION  

 
Statistical error measures like variances are generally defined in the context of statistical estimation.  Fig. 1 

and Table I describe the truth model and variables we will use in discussing statistical estimation.  This 

model applies to least-squares fitting (LSQF) [5] and Kalman filters [6] in a posteriori form [12], as well 

as other similar statistical estimation techniques.  We will briefly summarize this model here, and the 

reader is referred to [7-11] for more detail.  In this model, x (t) is general data variable (not necessarily the 

time error) whose samples x (tn) are collected over an interval T.  t and tn here are ideal continuous and 

discrete observation times and are considered error-free.  x (t) in our model is the sum of xc(t), the true or 

deterministic behavior, and xr(t), the contaminating error or measurement noise.  In the model, an 

unspecified estimation technique generates a ―best‖ estimate of xc(t) by adjusting M-parameters am in a 

model function xa,M(t) based on some fit over x(tn).  Note that we will use xa,M(t) both to describe the model 

function with adjustable parameters and the final fit, depending on the context.  We also note that xc(t), 

x (t), and xa,M(t) can be functions of other time dependent variables, such as temperature and pressure [13]. 

For simplicity, these other variables are not shown. 
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Fig. 1.  Truth model and variables for statistical estimation. 
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Table I.  Statistical estimation model & error measures. 

Basic variables 

Measured data : x(tn) = xc(tn) + xr(tn)               Sample times : tn  (over data period T) 

True or deterministic behavior: xc(t)               True noise: xr(t) 

M parameter model function and final estimate of xc(t): xa,M(t)  

(M-1)th order polynomial model function: xpoly,M(t) = m am(t - t0)
m
  [ m = 0:M-1] 

Basic Error Measures 

True accuracy of fit: xw,M(tn) = xa,M(tn) – xc(tn)   

Data precision: xj,M(tn) = x(tn) – xa,M(tn) 

M
th

 order -measures (stability & precision under certain conditions): ()
M

x(tn) 

1
st
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2

M,wnd   and 

2
M,j

2
M,wd /  based on a specific error model and assuming no model error. 

 

 

B. BASIC  ERROR  MEASURES  

  
In Fig. 1 and Table I, we define the true accuracy of the fit at tn as xw,M(tn); that is, the accuracy is the 

difference between xa,M(tn) and xc(tn).  xw,M(tn) is, of course, unobservable from the data alone, since a 

priori knowledge of xc(t) is required to generate it.  The basic observable error measure at tn is the data 

precision xj,M(tn), defined as the difference between x(tn) and xa,M(tn), also given in Table I.  From xw,M(tn) 

and xj,M(tn), one can form two types of theoretical variances (see Table I):  

 

(a) )t( n
2

M,w  and )t( n
2

M,j  we will call point variances.  These are generally used in a Kalman filter [6]. 

  

(b) 2
M,w  and 2

M,j  we will call average variances over T weighted by n.  These are generally used in a 

LSQF [5].  

  

Note that 2
M,w  is also called the standard variance and 2

1,j  is called the sample variance when n=1/(N-1) 

and the fit solution is the sample mean xa,1(t) = N
-1
nx(tn) [5].  Note also that the above are ―theoretical‖ or 

ensemble variances formed by averaging over an ensemble of data sets [14], that is, by using an ensemble 

averaging operator E  as opposed to an infinite time average operator <…> over a single ensemble member 

[14].  Finally, note that 2
M,w  and 2

M,j  may have implicit t-dependence, because both xa,M(tn) and xc(t) are 

not generally time-invariant [9,10]. 
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Another set of measures used to describe random error we will call M
th
 order -measures )t(x)( n

M  [3]. 

These and their theoretical variances )t( n
2

M,  and 2
M,  are defined in Table I [10,11].  These are 

measures of x (t) variations over the interval .  We note that )t( n
2

M,  and 2
2,  are related to the Allan 

variance of the time error [1], and 2
3,  is related to the Hadamard variance of the time error [4,15].  

 

-measures are generally interpreted as measures of M
th
 order stability [1,4,15].  To understand this 

interpretation, let us precisely define what we mean by M
th
 order stability.  Consider Fig. 2(a).  Here, we 

show M+1 data points x (tm’) where we have passed a model function xa,M(t) exactly through M of the M+1 

points, excluding the point at tm.  This is possible because there are M points and M adjustable parameters 

in xa,M(t), so there are zero degrees of freedom [5].  We then define the M
th
-order stability as the data 

precision xj,M(tm) at the excluded point.  Note from the figure that xj,M(tm) can be either an extrapolation or 

interpolation error, depending on tm.  What is important about this is one can show that 

 

 )t(x)()t(x 0
M

mM,j   (1) 

 

when: (a) xa,M(t) is xpoly,M(t) an (M-1)
th
-order polynomial, and (b) the tm’ are separated by the time interval  

[3].  Thus, -variances are measures of such M
th
-order stability. 
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Fig. 2.  -measures as stability and precision measures. 

 

 

Fig. 2(b) shows the data precision when all M+1 x(tm’) are used to determine xpoly,M(t) with an unweighted 

LSQF.  In this case, one can also show that (1) is true [7,8,16].  Thus, M
th
-order -variances can also be 

considered data precision measures under these conditions.  The proportionality constants relating 

)t(x mM,j to )t(x)( 0
M  for both the stability and precision have been published [7,8].  In the precision 

case, the published constant is derived semi-empirically [7], but we note that Charles A. Greenhall has 

provided the author with a totally analytical derivation of this constant [16].   Thus, the Allan variance can 

also be interpreted as a measure of data precision for M+1 x(tm) spaced by  when a time and frequency 

offset are removed from the data by an unweighted LSQF [6,7].  Similarly, the Hadamard variance can 

also be interpreted as a measure of such data precision when a time and frequency offset and the frequency 

drift are removed from the data by an unweighted LSQF [6,7].  This explains the sensitivity of the Allan 

variance and insensitivity of the Hadamard variance to deterministic frequency drift, since such drift is an 

unmodeled error term for M = 2, but not for M = 3 [7,8]. 
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C. THE  FIT  PRECISION  (ERROR  BARS)–A  DERIVED  ERROR  MEASURE 
 

From the data precision variances, one can generate what we will call the fit precision (deviate) or error 

bars )t( nM,wj
  and 

M,wj
 , as given in Table I [9-11].  These are statistical estimates of the accuracy based 

both on the observable data precision and the ratios d(tn) and d, which are theoretically calculated using a 

a specific noise model (and assuming that xa,M(t) would precisely reproduce xc(t) over T if no noise were 

present).  For example, do=M/(N-M) is the d for uncorrelated or white xr(tn) and an unweighted LSQF 

[5].  We note that this do does not apply when the xr(tn) are correlated [7-11].  We will later show that this 

misuse of the white do is one of the sources of unexpected fitting results when neg-p noise is present. 

 

D. THE  NEG-P  CONVERGENCE  PROPERTIES  OF  VARIANCES 

  

It is well known that an average variance 2
  can be represented using the spectral integral [14,17] 

 

 )f(L|)f(H|)f(Kdf p
2

s
2






     [ = w,M; j,M; ,M; …]   (2) 

 

Here, Hs(f) is a response function that describes the noise filtering properties of the system, and K(f) is a 

spectral kernel that describes the Lp(f) filtering properties of the variance in question independent of Hs(f) 

[3,17].  It is well known that the -variance kernel K,M(f) has M2f  highpass (HP) filtering properties for 

|f| << 1 [1,3,4].  Less well known is the fact that the M
th
-order data precision kernel Kj,M(f) has the same 

M2f  highpass (HP) filtering properties for |f| << 1 when xa,M(t) is an (M-1)
th
-order polynomial xpoly,M(t) 

[7,8].  This result is true for general fitting techniques given only minimal restrictions [7,8].  Fig. 3 shows 

this Kj,M(f) HP behavior when both a weighted and unweighted LSQF are used as the fitting technique 

[7,8].  Thus, both 2
M,j  and 2

M,  are guaranteed to converge for neg-p noise when 2M  |p| [3,5,6-8]. 

 

On the other hand, the accuracy kernel Kj,M(f) has no HP filtering properties.  (In fact, one can show that 

1)f(K)f(K M,wM,j   for a LSQF [11].)  Thus, 2
M,w  relies totally on the HP filtering properties of |Hs(f)|

2
 

for its convergence in the presence of neg-p noise [7-11].  Because of this, there is the obvious temptation 

to ―fix‖ a neg-p accuracy variance divergence simply by replacing it with one of the convergent variances 

without further action.  In the next section, we will show that this is improper. 
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Fig. 3.  Kj,M(f) HP filtering behavior for xpoly,M(t). 

 

 

E. EACH  VARIANCE  ADDRESSES  A  DIFFERENT  ERROR  QUESTION 
 

We have just shown that each type of variance addresses a different statistical error question: 

 

(a) Accuracy: What is the error of the fit from the true behavior without noise or other error present? 

(b) Data Precision: What are the data fluctuations from the fitted behavior? 

(c) Fit Precision: What is the estimated fit accuracy based on the measured data and a noise model?   

(d) Stability: What is the extrapolation or interpolation error to an additional point from a perfect M 

point polynomial fit? 

 

From this, it is obvious that one cannot eliminate a divergence problem in one type of variance simply by 

arbitrarily replacing it with another type, since all this does is misleadingly change the question and leaves 

the divergence intact for the original question. 
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Fig. 4.  A physical interpretation of a neg-p accuracy divergence. 

 

 

This leaves the problem of how to interpret the physical meaning of such a neg-p accuracy divergence.  

Fig. 4 shows one such interpretation.  Here, we show several data ensemble members where the data 

consist entirely of 2f   or random walk noise [2].  Note that the 2f   noise process is started at finite time (t 

= 0), which is called the non-stationary (NS) picture (to be discussed later) [2,11,14].  At a time t0 after the 

noise process has started, we then perform a one-parameter LSQF on the data over T to generate our fit 

xpoly,1(t) = a0.  One can immediately see that something is amiss.  We note that 1,j  is significantly less 

than 1,w .  Thus, a white-noise-based fit precision 1,wj  will severely underestimate the true accuracy 1,w  
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when N >> 1.  Furthermore, one can easily show that 2
1,w  as t0, while 2

1,j  will remain finite [7-

11].  This is a physical meaning of a neg-p accuracy variance infinity: that the true accuracy of a fit will 

become severely inaccurate when t0 is large (which is the typical physical case).  One can obviously see 

from this example that using the wrong 1,wj  and M,  to represent 1,w  in this case will just mask the 

problem, not fix it. 

  

The proper response here would be: (a) to theoretically analyze d using the correct noise model [7-11], (b) 

to identify that the 1,w  infinity will occur before performing the experiment, and (c) to redesign the 

system (Hs(f)) and/or reformulate the question so that the accuracy infinity will not occur [7-11].  This last 

step often involves the introduction of periodic calibration [11]. 

 

For 3|f|   noise, note that 2
1,j  as tg, but that 2

2,j  will remain finite [7,8].  Thus, if one is 

interested in obtaining a finite data precision, the proper response to a 2
M,j  infinity is to change the 

estimation model M-order, not to arbitrarily switch to an Allan or Hadamard variance and leave the model 

function xa,M(t) untouched. 

  

Finally, we note that )tfln( 0h
2

M,w   for 1|f|   noise and Hs(f) given by a low-pass cut-off fh [2]. 

 

Thus, even though the 1|f|   contribution to 2
M,w  is strictly infinite as t0; practically, this 1|f|   

contribution is often smaller than the white noise contribution, even when t0 is the age of the universe [17]. 

 

  

III. MYTH  2:  ONE  CAN  OBTAIN  PROPER  ESTIMATION  RESULTS 

FROM  (NON-HP-FILTERED)  NEG-P  NOISE  CONTAINING  DATA 
 

In this section, we will show that non-HP-filtered neg-p behaves more like systematic error than 

conventional noise.  Thus, estimation techniques like least squares and Kalman filters can generate 

severely anomalous results when such noise is present, since estimation techniques have difficulty 

separating systematic error from true behavior [5].  We will show that this systematic-like behavior is due 

to the non-ergodic and infinitely correlated behavior of non-HP-filtered neg-p noise.  In the next sections, 

will show that neg-p noise has these properties using the non-stationary (NS) and wide-sense stationary 

(WSS) pictures of a random process [2,10,11,14,18]. 

  

A. THE  NS  AND  WSS  PICTURES  OF  A  RANDOM  PROCESS 

  
Two covariant representations or pictures are generally used when discussing a random process xr(t).  The 

more inclusive, but less familiar, one is the non-stationary (NS) picture summarized in Table II [2,18].  In 

the NS picture, xr(t) is zero for t<0 or some other finite value.  Because of this finite start time, the noise 

covariance or autocorrelation function of the process Rr(tg,) [14,18] (the same here because we are 

assuming Exr(t)=0) has two time arguments: tg the global or average time from the start of the noise 

process (t=0), and  the difference or local time between the covariant xr arguments [18].  The other less 

inclusive picture is the more familiar wide-sense stationary (WSS) one [2,12,14,19].  This picture is also 

summarized in Table II.  Here, xr(t) is non-zero for all, t and xr(t) is assumed to be statistically time 

invariant so that the autocorrelation function is now given by Rr().  We note that xr(t) must also be 

statistically bounded for the process to be WSS, because many WSS theorems require such bounded 
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behavior for their proof [19].  This bounded behavior is often ignored in descriptions of neg-p noise, which 

can lead to erroneous conclusions.  Even when the underlying noise process is inherently WSS, note that 

one must use the NS Rr(tg,) for small tg, because of initial start-up transients [2]. 

  

As shown in Table II, an NS process has three different covariant spectral functions that are formed by the 

Fourier Transforms (FTs) of Rr(tg,) with respect to various combinations of tg and  [18].  The Wigner-

Ville function Wr(tg,f) in the table can be interpreted as a tg-dependent PSD and is the most physically 

intuitive for neg-p noise analysis.  The Loève Spectrum Lr(fg,f) in the table, on the other hand, is useful for 

simplifying analytical expressions [2,9].  The Ambiguity Function Ar(fg,) in the table is included here for 

completeness and is used in signal processing [18].  In the WSS picture, the SSB PSD Lr(f) defined in 

Table II is the well-known spectral function formed by taking the complex Fourier transform of Rr() with 

respect to   [12,14,19].  Note that one can also use the double-sideband PSD Sr(f), as is common practice 

in time and frequency papers [1]. 

An important measure of the behavior of a random process is its correlation time c, which is defined in 

Table II.  Note that this definition is an extension of a WSS one [20] to include the NS picture in the limit 

of tg.  c is an important parameter in statistical estimation, because Ni=T/c represents the number of 

statistically independent samples over T [20].  Thus, averaging over N samples reduces errors by some 

power of Ni (not N) when the relevant noise process is correlated, and only when T >> c [10,11].  This 

will be very important in later discussions. 

Finally, note from Table II that one can relate the NS picture to the WSS picture by letting tg (tg is 

equivalent to letting the xr(t) start time go to -) [2,21].  Two important NS to WSS theorems based on this 

are also given in Table II [2,11].  These theorems will play a prominent role in understanding the true 

statistical properties of neg-p noise, as we will discuss in the next section. 

 

B. THE  STATISTICAL  PROPERTIES  OF  NEG-P  NOISE 

 

One can show that non-HP-filtered neg-p noise has the basic properties listed in Table III [2].  Note that 

the WSS Rp() is infinite for all , because ),t(RLim)(R gp
t

p
g




, as given in Table II.  Thus, the WSS 

Rp() is strictly indefinable.  However, because )f,t(WLim)f(L gp
t

p
g 

  and this limit is well-behaved for 

f0, one can properly define the WSS Lp(f) for f0 without the use of the WSS Rp().  Thus, one can 

interpret equations such as (2) as the tg limit of the NS picture and properly apply them to neg-p 

problems. 

 

Another important property of non-HP-filtered neg-p noise listed in Table III is that its c is infinite.  This 

means that Ni is effectively zero for all T, which is one of the factors that leads to the anomalous neg-p 

fitting behavior that we will discuss later. 

A very important (and not well-known property) of non-HP-filtered neg-p noise is that it is intrinsically 

non-ergodic, that is the infinite time average < xp(t)>T is not equal to the ensemble average E 
xp(t) for 

such noise [10,11,14,22].  This is a consequence of a theorem stating that an NS random process xp(t) is 

ergodic if and only if Rp(tg,) is bounded for all tg (including ) and the last xp(t) point in <xp(t)>T becomes 

decorrelated with <xp(t)>T as T [22].  This decorrelation property can be shown to imply that c must 

be finite.  This is another factor that leads to the anomalous fitting behavior of neg-p noise, which we will 

now discuss. 
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Table II.  Representations of a random process. 

 

Non-Stationary (NS) Picture  

xr(t) = 0 for t<0 

tg = Global or average time from start of noise process 
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Lp(fg,f) form of Lr(f) derived from the Laplace Final Value Theorem. 

 

 

Table III.  Properties of non-highpass-filtered neg-p noise. 
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Neg-p noise has an infinite correlation time: c =  

Neg-p noise is inherently non-ergodic: E xp(t)   <xp(t)>T. 
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C. ANOMALOUS  FITTING  BEHAVIOR  IN  FINITE  DATA  SETS 

  

Now let us investigate how the non-ergodicity and infinite c of neg-p noise effects practical 

implementations of fitting techniques, such as least squares and Kalman filters.  Fig. 5 shows a simulated 

unweighted LSQF for both p = 0 and p = -3 noise when: (a) both the true behavior xc(t) and the model 

function xa,M(t) are 2
nd

-order polynomials (M=3), (b) Hs(f) is an ideal Nyquist LP filter, and (c) the 

uncorrelated do is used to predict the error bars xa,M(t)wj,M (which are so small in the figures that they 

appear coalesced with xa,M(t)).  In the p = 0 case shown on the left of Fig. 5, note that the fit behaves as 

ensemble-based white-noise fitting theory predicts; that is, xc(t) and xa,M(t) fall on top of each other for the 

large N used, and wj,M properly predicts w,M. 

   

For the p = -3 case on the right of the figure, however, note that xa,M(t) significantly deviates from xc(t), 

while the white-noise-based error bars do not properly predict this deviation. 

 

 

xa,M ± wj,M–x --xc

f 0 Noise f -3 Noise

 
 

Fig. 5.  Unweighted LSQF with p = 0 and p = -3 (N=2048). 

 

 

What is happening here is that the particular xr(tn) ensemble member in this example has behavior that is 

2
nd

-order polynomial-like and, thus, substantially correlated with xc(t), so that LSQF cannot separate this 

correlated noise component from the true behavior of xc(t) [5].  This is what generates the anomalous 

fitting results; the fit interprets the correlated noise as being part of xc(t).  Such anomalous behavior is well 

known as the result of correlated systematic error [5] and is a specific example of a more general 

principle—that linearly dependent variables cannot be separated by any solution technique, because the 

determinant of the solution matrix goes to zero [24].  This systematic-like behavior in the neg-p noise case 

is a direct result of its infinitely correlated and non-ergodic nature.  Thus, E-averaged theory predictions do 

not represent the behavior of individual ensemble members over the data collection interval. 

  

An important consequence of the above is that noise whitening, a procedure meant to determine the true 

structure of xc(t) by increasing M in the model function xa,M(t) until the residuals xj,M(tn) are uncorrelated 

[5], will not properly identify xc(t) when non-HP-filtered neg-p noise is present.  That is, the truth model 

for such noise whitening is uncorrelated noise plus true behavior, and neg-p noise is highly uncorrelated. 

Note that p = -1 noise can be a marginal case when white noise is also present, because of the slow growth 

of this noise as tg becomes large [17]. 

 

Fig. 6 shows that Kalman filters also exhibit such anomalous neg-p behavior when neg-p noise is present. 

Here, simulation results are shown for both p = 0 and p = -2 noise (measurement noise not process noise 

[6,12]) when xc(t) and xa,M(t) are again both quadratic polynomials.  In the middle graph, where p = -2 and 

an uncorrelated noise model is used [4], one again sees the characteristic veering off of xa,M(t) from xc(t) 

and the gross underestimation of the true errors by the error bars.  What is even more interesting is the right 

graph.  Here again, p = -2, but the Kalman filter is augmented with a random walk measurement noise 

model, which is supposed to correct for such anomalous behavior [6].  One can see that xa,M(t) is closer to 

xc(t) and the error bars do a better job of estimating the true error.  However, there still are substantial 
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deviations of xa,M(t) from xc(t) and the error bars still underestimate the true error.  The culprit here is the 

non-ergodic-like behavior of the neg-p noise and the mimicking of the true behavior by the neg-p noise.  It 

is expected that p = -3 noise would exhibit even more significant anomalous behavior with an augmented 

Kalman filter, because p = -3 noise looks like a slowly changing random drift [2].  However, the author has 

not demonstrated this yet.  
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xa,M ± wj,M–x --xc xa,M ± wj,M–x --xc
 

 

Fig. 6.  Anomalous neg-p behavior in a Kalman filter. 

 

 

D. ERGODICITY,  C,  AND  PROPER  FITTING  BEHAVIOR 
 

Fig. 7 illustrates that neg-p-like anomalous fitting behavior also occurs in ergodic WSS but correlated 

processes when one does not have T/c >> 1.  Shown here is a (non-augmented) Kalman simulation using 

stationary Gauss-Markov noise (single pole lowpass-filtered white noise [12,14]).  This noise is both 

ergodic and WSS, but has a c related to the reciprocal of the lowpass knee frequency of the noise filter. 

One can observe from the figure that the Kalman results behave as theoretically expected for T/c >> 1, but 

become more and more anomalous as T/c approaches 1.  This occurs because the single noise ensemble 

members averaged over T here do not behave like their ensemble-averaged counterparts when T 

approaches c.  That is, the noise is not ergodic-like over T (E…  <…>T) when we don’t have T/c >>1 

[11].  One can see here that strict ergodicity, E… = <…>T [14,22] does not guarantee such ergodic-like 

behavior over any T.  Another way to view this is that there are not enough statistically independent 

samples Ni = T/s when we don’t have T/c >> 1 for the fit to be statistically meaningful.  We note that 

works on ensemble-based fitting theory [5,6,12] often implicitly assume E…  <…>T  as N for any T, 

but we have just shown this is not the case for correlated noise processes.  This assumption for T0 is 

called local ergodicity [25].  To coin a phrase, a noise process with a substantial c is intermediate ergodic; 

that is, one must have T/c >> 1 for the process to be ergodic-like. 

 

 

(a) (b) (c) (d)

xa,M ± wj,M–x --xc –xa,M

(a) (b) (c) (d)

xa,M ± wj,M–x --xc –xa,M xa,M ± wj,M–x --xc –xa,M
 

 

Fig. 7.  Kalman filter simulations for a correlated Gauss-Markov process: (a) T/c=2000,  

(b) T/c=200,  (c) T/c=20,  (d) T/c=2. 
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Finally, what is obvious from this above discussion is that non-highpass-filtered neg-p noise will generate 

such anomalous polynomial fitting behavior for any T, because c = .  Again, 1|f|   noise can often be a 

marginal exception, because t0 is large, but not infinite, and white noise effects can dominate. 

 

  

IV. CONCLUSIONS 
 

In this paper, we have shown that one cannot simply swap variances to ―fix‖ a neg-p divergence problem 

without further action.  We have shown that each type of variance is a statistical answer to a different error 

question and such arbitrary swapping merely masks the true problem that caused the divergence.  We have 

also shown that such neg-p variance divergences are true indicators of estimation problems that must be 

physically addressed, not ignored.  Furthermore, we have shown that non-highpass-filtered neg-p noise acts 

like systematic error and generates anomalous behavior in statistical estimation techniques like least 

squares and Kalman filters when the estimation functions consist of polynomials.  It has also been shown 

that this systematic behavior is due to the non-ergodic and infinitely correlated nature of such neg-p noise. 

As a final note, the surest way to reduce the anomalous effects of neg-p noise is develop frequency 

standards with lower neg-p noise.  This is good news for frequency standards developers. 
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